A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases.

نویسندگان

  • Yujing Wang
  • Jifeng Li
  • Shuguo Hou
  • Xingwei Wang
  • Yuan Li
  • Dongtao Ren
  • She Chen
  • Xiaoyan Tang
  • Jian-Min Zhou
چکیده

The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with Arabidopsis thaliana MAP KINASE KINASE5 (MKK5) and likely other MKKs to inhibit MPKs and PAMP-triggered immunity. Inhibition of PAMP-induced MPK phosphorylation was observed when HopF2 was delivered naturally by the bacterial type III secretion system. In addition, HopF2 Arg-71 and Asp-175 residues that are required for the interaction with MKK5 are also necessary for blocking MAP kinase activation, PAMP-triggered defenses, and virulence function in plants. HopF2 can inactivate MKK5 and ADP-ribosylate the C terminus of MKK5 in vitro. Arg-313 of MKK5 is required for ADP-ribosylation by HopF2 and MKK5 function in the plant cell. Together, these results indicate that MKKs are important targets of HopF2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudomonas syringae Type III Effector HopF2 Suppresses Arabidopsis Stomatal Immunity

Pseudomonas syringae subverts plant immune signalling through injection of type III secreted effectors (T3SE) into host cells. The T3SE HopF2 can disable Arabidopsis immunity through Its ADP-ribosyltransferase activity. Proteomic analysis of HopF2 interacting proteins identified a protein complex containing ATPases required for regulating stomatal aperture, suggesting HopF2 may manipulate stoma...

متن کامل

Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4.

Pathogenic microbes often modulate phytohormone physiology in the host to their advantage. We previously showed that the Pseudomonas syringae effector protein AvrB perturbs hormone signaling, as exemplified by upregulated expression of jasmonic acid response genes, and enhances plant susceptibility. Here we show that these effects of AvrB require the Arabidopsis mitogen-activated protein kinase...

متن کامل

ADP-ribosylation of rho by C3 ribosyltransferase inhibits IL-2 production and sustained calcium influx in activated T cells.

Activation of the T lymphocyte induces dramatic cytoskeletal changes, and there is increasing evidence that disruption of the cytoskeleton inhibits early and late events of T cell signal transduction. However, relatively little is known about the signaling molecules involved in activation-induced cytoskeletal rearrangement. The rho family of small GTP-binding proteins, which include rho, rac, a...

متن کامل

A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants.

Pathogen-associated molecular patterns (PAMPs) elicit basal defense responses in plants, and, in turn, pathogens have evolved mechanisms to overcome these PAMP-induced defenses. To suppress immunity, the phytopathogenic bacterium Pseudomonas syringae secretes effector proteins, the biochemical function and virulence targets of which remain largely unknown. We show that HopAI1, an effector widel...

متن کامل

Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6.

Mitogen-activated protein kinases (MAPKs) are key enzymes that mediate adaptive responses to various abiotic and biotic stresses, including pathogen challenge. The proteinaceous bacterial elicitor harpin (secreted by Pseudomonas syringae pv syringae) activates two MAPKs in suspension cultures of Arabidopsis var. Landsberg erecta. In this study, we show that harpin and exogenous hydrogen peroxid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2010